Опубликовано 31.07.2018 по предмету Алгебра от Гость

Уравнение геометрического места точек плоскости,равноудаленных от двух прямых y=-4x+12 и y=-4x+20 имеет вид

Ответ оставил Гость

Прямые y = -4x + 12 и y = -4x + 20 параллельны, т.к. их угловые коэффициенты равны.
Значит, точки, равноудаленные от этих прямых, лежат на прямой, параллельной данным.
Т.е. её уравнение будет выглядеть так: y = -4x + b.

Найдем точки пересечения функций с осью Ox: y = 0
для y = -4x + 12: x = 3
для y = -4x + 20: x = 5
Получаем (3; 0) и (5; 0).
Точка, которая лежит ровно между ними: (4; 0).
Точка (4; 0) принадлежит прямой y = -4x + b, значит, мы можем подставить её координаты в уравнение.
0 = -4*4 + b
b = 16

Таким образом, y = -4x + 16.

Не нашел нужный ответ?

Если ответ по предмету Алгебра отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы
Самые новые вопросы