Опубликовано 03.01.2018 по предмету Алгебра от Гость

Сумма бесконечно убывающей геометрической прогрессии равна 32, а
сумма первых пяти членов -31. Найдите первый член прогрессии

Ответ оставил Гость

S=/frac{b_{1}}{1-q}=32//
b_{1}+b_{2}+b_{3}+b_{4}+b_{5}=-31//
//
b_{1}(1+q+q^2+q^3+q^4)=-31//
/frac{-31}{1+q+q^2+q^3+q^4} = 32(1-q)
-31=32(1-q^5)//
q^5=/frac{63}{32}//
b_{1}=32(1-/sqrt[5]{/frac{63}{32}})

Не нашел нужный ответ?

Если ответ по предмету Алгебра отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы
Самые новые вопросы