Опубликовано 03.01.2018 по предмету Алгебра от Гость

Докажите, что множество иррациональных чисел не замкнуто относительно сложения.

Ответ оставил Гость

Для того чтобы доказать, что множество не замкнуто, нам достаточно найти два иррациональных числа - сложить их и в результате получить рациональное число. То есть сумма двух иррациональных чисел не всегда иррациональна, то есть не замкнуто на иррациональности.
Возьмем  простейшее иррациональное число √2 и соответсвенно -√2
сложим √2 + (-√2) = √2 - √2 = 0
0 число рациональное . Тем самым мы нашли два иррациональных числа, которые при сложении дают рациональное число
Так же доказывается  незамкнутость иррациональных чисел при 
1. разности 1+√3 и √3 равна 1
2. произведении √2 и 2√2 равно 4
3. делении 2√2 и √2 равно 2
---------------------------
Докажем что √2 иррациональное число
Предположим что оно рациональное то есть его можно представить в виде несократимой дроби √2=a/b где a , целые и взаимнопросты (в противном случае они бы сократились) замечаем что a b оба не четные (если бы были оба четными то сократились на 2)
Возводим в квадрат  2=a²/b² 2b²=a²  замечаем что число 2b² четное, значит и a² тоже четное. заменяем a=2c и подставляем в 2b²=(2c)²=4c²
b²=2c²  получили что и b четное. То есть a b четные и их можно сократить, но мы предполагали что они взаимнопросты, и тем самым допустили противоречие. Значит √2 нельзя представить в виде дроби и оно иррациональное число

Не нашел нужный ответ?

Если ответ по предмету Алгебра отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы
Самые новые вопросы