Опубликовано 03.01.2018 по предмету Алгебра от Гость

Вычислите:
а) корень из 2 sin 45-cos 30 sin 60+ctg 45 tg 135-tg 0
б) sin П/3+ корень из 2 cos П/4 - корень из 3 сtg П/6
Упростите выражение:
а) (1-sin a)(1+sin a)/cos a, a не равно П/2+Пn, n принадлежит Z
б)sin(П+а)+cos(2П+а)-sin(-a)-cos(-a)

Ответ оставил Гость

 /sqrt{2}sin45-cos30sin60+ctg45tg135-tg0; // sin45= /frac{ /sqrt{2}}{2}//cos30= /frac{ /sqrt{3}}{2}//sin60= /frac{ /sqrt{3}}{2}//ctg45=1//tg135=tg(180-45)=-tg45=-1 // tg0=0 //  /sqrt{2}*/frac{ /sqrt{2}}{2}- /frac{ /sqrt{3}}{2}* /frac{ /sqrt{3}}{2}+1*(-1)-0= 1- /frac{3}{4}-1=- /frac{3}{4}


sin /frac{ /pi }{3}+ /sqrt{2}cos /frac{ /pi }{4}- /sqrt{3}ctg /frac{ /pi }{6};//sin /frac{ /pi }{3}= /frac{ /sqrt{3}}{2}//cos/frac{ /pi }{4}= /frac{ /sqrt{2}}{2}//ctg /frac{ /pi }{6}=/sqrt{3} // /frac{ /sqrt{3}}{2}+/sqrt{2}* /frac{ /sqrt{2}}{2}- /sqrt{3}* /sqrt{3}=/frac{ /sqrt{3}}{2}+1-3=/frac{ /sqrt{3}}{2}-2


 /frac{(1-sina)(1+sina)}{cosa} // a /neq /frac{ /pi }{2}+ /pi n //  //  /frac{1-sin^{2}a}{cosa}= /frac{cos^{2}a}{cosa}=cosa //  //  // sin( /pi +a)+cos(2 /pi +a)-sin(-a)-cos(-a);//sin( /pi +a)=-sina//cos(2 /pi +a)=cosa //-sin(-a)=sina//-cos(-a)=-cosa // -sina+cosa+sina-cosa=0

Не нашел нужный ответ?

Если ответ по предмету Алгебра отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы
Самые новые вопросы