Опубликовано 03.01.2018 по предмету Алгебра от Гость

Завтра сдавать зачет по теме:"Действия с числами".Сначала всю теорию,потом практику.Не могли бы вы написать в кратце что я должна рассказать?срочно,хелп!

Ответ оставил Гость

История развития комплексных чисел.Введение комплексных чисел было связано с открытием решения кубического уравнения, т.е. ещё в 16 веке.И до этого открытия при решении квадратного уравнения x2 + + = px приходилось сталкиваться со случаем, когда требовалось извлечь квадратный корень из (p/2)2 - q, где величина (p/2)2 была меньше, чем q. Но в таком случае заключали, что уравнение не имеет решений. О введении новых (комплексных) чисел в это время (когда даже отрицательные числа считались "ложными") не могло быть и мысли. Но при решении кубического уравнения по правилу Тартальи оказалось, что без действий над мнимыми числами нельзя получить действительный корень.Теория комплексных чисел развивалась медленно: ещё в 18 веке крупнейшие математики мира спорили о том, как находить логарифмы комплексных чисел. Хотя с помощью комплексных чисел удалось получить много важных фактов, относящихся к действительным числам, но самое существование комплексных чисел многим казалось сомнительным. Исчерпывающие правила действий с комплексными числами дал и в 18 веке русский академик Эйлер - один из величайших математиков всех времён и народов. На рубеже 18 и 19 веков было указано Весселем (Дания) и Арганом (Франция) геометрическое изображение комплексных чисел. Но на работы Весселя и Аргана не обратили внимания, и лишь в 1831 г. когда тот же способ был развит великим математиком Гауссом (Германия), он стал всеобщим достоянием.О комплексных числах.Всвязи с развитием алгебры потребовалось ввести сверх прежде известных положительных и отрицательных чисел числа нового рода. Онии называются комплексными.Комплексное число имеет вид a + bi; здесь a и b - действитель-ные числа , а i - число нового рода, называемое мнимой единицей."Мнимые" числа составляют частный вид комплексных чисел(когда а = 0). С другой стороны, и действительные числа являются частным видом комплексных чисел (когда b = 0).Действительное число a назовем абсциссой комплексного числа a + bi; действительное число b - ординатой комплексного числаa + bi. Основное свойство числа i состоит в том, что произведе-ние i*i равно -1, т.е.i2= -1. (1)Долгое время не удавалось найти такие физические величины, над которыми можно выполнять действия, подчинённые тем же правилам, что и действия над комплексными числами - в частности правилу (1). Отсюда названия: "мнимая единица", "мнимое число" и т.п. В настоящее время известен целый ряд таких физических величин, и комплексные числа широко применяются не только в математике, но также и в физике и технике.Оставим в стороне вопрос о геометрическом или физическом смысле числа i, потому что в разных областях науки этот смысл различен.Правило каждого действия над комплексными числами выводится из определения этого действия. Но определения действий над комплексными числами не вымышлены произвольно, а установлены с таким расчетом, чтобы согласовались с правилами действий над вещественными числами. Ведь комплексные числа должны рассматриваться не в отрыве от действительных, а совместно с ними.Соглашение о комплексных числах.

Не нашел нужный ответ?

Если ответ по предмету Алгебра отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы
Самые новые вопросы