Опубликовано 03.01.2018 по предмету Геометрия от Гость

Площадь параллелограмма равна 30√2см², а один из углов равен 60°. Найдите его периметр, если длина одной из сторон равна 6см.

Ответ оставил Гость

Два варианта решения. 
Вариант 1)
Площадь параллелограмма S=ah, где а - сторона, h- высота, проведенная к ней. 
 Пусть известная сторона = 6 
Опустив перпендикуляр из вершины тупого угла параллелограмма на неизвестную сторону а, найдем  длину высоты h. 
h=6*cos(60°)=3√3 
Cторону а  найдем из площади параллелограмма. 
а=S:h=30√3 :3√3=10 см
P=2(a+b)=2(6+10)=32 см
Вариант 2)
Площадь параллелограмма равна произведению сторон на синус угла между ними. 
S=ab*sin (60°) 
30√3=6*b*√3/2 
30=6b:
6b=60 
b=10 см
P=2(a+b)=2(6+10)=32 см

Не нашел нужный ответ?

Если ответ по предмету Геометрия отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы
Самые новые вопросы