Опубликовано 03.01.2018 по предмету Геометрия от Гость

Из одной точки проведены две наклонные к плоскости, образующие между собой угол β, а с плоскостью - углы, равные Ф. Найдите угол между их проекциями на эту плоскость.

Ответ оставил Гость

Обозначим наклонные a, b...
т.к. наклонные образуют с плоскостью равные углы и проведены из одной точки, то эти наклонные равны...
т.к. перпендикуляр, опущенный на плоскость,
с одной стороны = a*sin(Ф) = b*sin(Ф) = h => a=b
их проекции тоже равны (обозначим p)))...
отрезок, соединяющий концы наклонных на плоскости --- (с)
искомый угол (х)...
угол между наклонной и плоскостью --- угол между наклонной и ее проекцией...
из прямоугольного треугольника по определению косинуса можно записать: 
p = a*cos(Ф)
по т.косинусов c^2 = 2*a^2 - 2*a^2*cos(β) = 2*a^2*(1 - cos(β))
c^2 = 2*p^2 - 2*p^2*cos(x) = 2*p^2*(1 - cos(x)) = 2*a^2*(cos(Ф))^2 * (1 - cos(x))
эти равенства можно приравнять...
1 - cos(x) = (1 - cos(β) / (cos(Ф))^2
cos(x) = 1 - (1 - cos(β) / (cos(Ф))^2
угол равен арккосинусу этого выражения...

Не нашел нужный ответ?

Если ответ по предмету Геометрия отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы
Самые новые вопросы