Опубликовано 03.01.2018 по предмету Геометрия от Гость

Найти длину круга вписанного в ромб, диагонали которого 15 и 20

Ответ оставил Гость

По сути, задача сводится к нахождению высоты прямоугольного треугольника, образованного пересечением диагоналей и стороной ромба. 
Итак, известно, что диагонали ромба пересекаются под прямым углом и точкой пересечения делятся пополам, то есть у нас есть 4 равных прямоугольных треугольника с катетами 15/2 и 10. 
Найдём гипотенузу этого треугольника (то есть сторону ромба) по теореме Пифагора: c=sqrt(a^2 + b^2) = sqrt(225/4 + 100) = 25/2
Высота прямоугольного треугольника, проведённая к гипотенузе, считается по формуле: h=ab/c = 6. 
Так как окружность вписана в ромб, то радиус этой окружности перпендикулярен стороне ромба, то есть радиус равен высоте, которую мы только что нашли. 
И теперь считаем длину окружности по формуле: L=2 /pi r, r=h, значит L=2*pi * 6=12pi

Ответ: 12pi

Не нашел нужный ответ?

Если ответ по предмету Геометрия отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы
Самые новые вопросы