Опубликовано 03.01.2018 по предмету Геометрия от Гость

Основание
пирамиды МАВСД – квадрат, сторона которого равна 12 см. Боковое ребро МД
перпендикулярно плоскости основания пирамиды. Угол между плоскостями основания
и грани МАВ равен 30. Вычислите расстояние от вершины пирамиды до прямой
АС и площадь полной поверхности пирамиды.

Ответ оставил Гость

Из условия имеем, треугольник MAD, прямоугольный, и угол между плоскостями равен углу MAD треугольника, следовательно MD = Тангенс(30)*AD, MA = 2*MD. 

Теперь если считать Центром квадрата точку О, то MО - расстояние от вершины пирамиды до прямой AC. Треугольник MDО - прямоугольный, DО - половина диагонали квадрата, находим легко, и вычисляем MО как гипотенузу, по известным двум катетам MD и DО.

Площадь теперь тоже найти не трудно:
это сумма площадей квадрата, прямоугольного треугольника MAD (стороны известны), прямоугольного треугольника MCD, равного MAD, прямоугольного треугольника MAB равного MBC, в которых тоже уже известны все стороны и не сложно посчитать площадь

Не нашел нужный ответ?

Если ответ по предмету Геометрия отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы
Самые новые вопросы