Опубликовано 03.01.2018 по предмету Геометрия от Гость

Угол при вершине равнобедренного треугольника равен а. Найдите отношение радиусов вписанной в треугольник и описанной около него окружностей

Ответ оставил Гость

Пусть угол при основании b, длина основания L, радиусы r и R;
2*b = 180 - a; b = 90 - a/2; b/2 = 45 - a/4;
L = 2*R*sin(a); теорема синусов.
r /(L/2) = tg(b/2); центр вписанной окружности лежит на биссектрисе.  
r = R*sin(a)*tg(b/2);r/R = sin(a)tg(45 - a/4); это уже ответ :))) его можно упростить.
Если умножить и разделить на 2*соs(45 - a/4); то
r/R = sin(a)*(2*sin(45 - a/4)*cos(45 - a/4))/((2*(cos(45 - a/4))^2) - 1 + 1);
r/R = sin(a)*sin(90-a/2)/(cos(90 - a/2)+1) = sin(a)*cos(a/2)/(sin(a/2)+1);
r/R = 2*sin(a/2)*(cos(a/2))^2/(sin(a/2)+1) = 2*sin(a/2)*(1 - (sin(a/2))^2)/(sin(a/2)+1); 
r/R = 2*sin(a/2)*(1 - sin(a/2)); 
если a = 60°; a/2 = 30°; sin(a/2) = 1/2; r/R = 1/2; как и должно быть.

Не нашел нужный ответ?

Если ответ по предмету Геометрия отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы
Самые новые вопросы