Опубликовано 03.01.2018 по предмету Геометрия от Гость

Поиск результатов по фразе "в круге проведены две взаимно перпендикулярные и пересекающиеся хорды AB и CD. известно что AB=BC=CD. установите что больше площадь круга или площадь квадрата со стороной AB ?"

Ответ оставил Гость

Пусть M — точка пересечения хорд AB и CD, O — центр окружности, R — её радиус, P и Q — проекции точки O на AB и CD соответственно.Тогда MP = QO = PO = MQ. Следовательно, MB = CM. Поэтому CBA = , а т.к. AB = BC, то треугольник ABC — равнобедренный. ПоэтомуACB =  = .ТогдаAB = 2R sinACB = 2R sin,и площадь квадрата со стороной AB равнаAB2 = 4R2sin2 = 2R21 - cos == 2R21 +  = R2(2 + ).Площадь круга равна R2.Поскольку 2 +  > 3, 4 > , то площадь квадрата больше. 


Ответ Площадь квадрата.

Не нашел нужный ответ?

Если ответ по предмету Геометрия отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы
Самые новые вопросы