Опубликовано 03.01.2018 по предмету Геометрия от Гость

ПОМОГИТЕ СРОЧНО ПЛИЗ!!!!!!!!! на сторонах равностороннего треугольника,вне его построены квадраты.Вершины квадрата,лежащие вне треугольника ,соединены отрезками.Найдите площадь полученного шестиугольника,если сторона данного треугольника равна а.

Ответ оставил Гость

Треугольник АВС равносторонний, АВ=ВС=АС=а, площадьАВС=а в квадрате*корень3/4,квадраты, постороенные на сторонах равны, сторона квадрата=а, площадь квадрата=а*а=а в квадрате, площадь 3-х квадратов=3*а в квадрате, соединяя вершины квадртатов получим три равнобедренных треугольника, где две стороны=а, а угол между ними=120,( 360-2 угла по 90-угол треугольника=60., 360-90-90-60=120,), площадь равнобедренного треугольника=1/2сторона  в квадрате*sin120=1/2*а в квадрате*корень3/2=а в квадрате*корень3/4, общая площадь шестиугольника=площадьАВС+площадь квадратов+площадь равнобедренных треугольников=а в квадрате*корень3/4+3*а вквадрате+3*а в квадрате*корень3/4=3*а в квадрате+а в квадрате*корень3

Не нашел нужный ответ?

Если ответ по предмету Геометрия отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы
Самые новые вопросы