Опубликовано 03.01.2018 по предмету Математика от Гость

Двое играющих по очереди увеличивают натуральное число так, чтобы при каждом увеличении разность между новым и старым значениями числа была бы больше нуля, но меньше старого значения. Начальное значение числа равно 2. Выигравшим считается тот, в результате хода которого получится 2012. Кто выигрывает при правильной игре: начинающий или его партнёр? Найдите сумму всех выигрышных позиций (2012 мы тоже считаем выигрышной).

Ответ оставил Гость

Назовем состоянием количество очков до хода игрока. Состояние выигрышно, если приводит к выигрышу игрока, чей сейчас ход, и проигрышно иначе.

Все состояния от 1007 до 2011 с очевидностью выигрышные (до 2012 остаётся только один ход).
1006 - проигрышное (любым ходом переходим в выигрышное состояние 1007 - 2011).
Состояния 504 - 1005 - выигрышные (можно следующим ходом перевести игру в проигрышное состояние 1006).
503 - проигрышное (дальше выигрышные 504 - 1005).
252 - 502 - выигрышные (дальше в 503).
251 - проигрышное (252 - 501)
126 - 250 - выигрышные (дальше в 251).
Можно и дальше так выписывать, но можно сразу написать, что дальше проигрышные состояния 125, 62, 31, 15, 7, 3.

Дальше остаётся заметить, что выигрышные позиции (которые нужно найти по условию) - это проигрышные состояния.
Сумма выигрышных позиций = 2012 + 1006 + 503 + 251 + 125 + 62 + 31 + 15 + 7 + 3 = 4015.

Т.к. 2 - выигрышное состояние, то выигрывает первый игрок.

Не нашел нужный ответ?

Если ответ по предмету Математика отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.


Найти другие ответы
Самые новые вопросы